241 research outputs found

    Uses of lunar sulfur

    Get PDF
    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource

    Mars surface science requirements and plan

    Get PDF
    The requirements for obtaining geological, geochemical, geophysical, and meteorological data on the surface of Mars associated with manned landings were analyzed. Specific instruments were identified and their mass and power requirements estimated. A total of 1 to 5 metric tons, not including masses of drill rigs and surface vehicles, will need to be landed. Power associated only with the scientific instruments is estimated to be 1 to 2 kWe. Requirements for surface rover vehicles were defined and typical exploration traverses during which instruments will be positioned and rock and subsurface core samples obtained were suggested

    A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Get PDF
    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of Rietveld methods for XRD data analysis can provide a powerful tool for quantitative mineralogy and for obtaining crystallographic data on complex minerals

    Thermal design of the space shuttle external tank

    Get PDF
    The shuttle external tank thermal design presents many challenges in meeting the stringent requirements established by the structures, main propulsion systems, and Orbiter elements. The selected thermal protection design had to meet these requirements, and ease of application, suitability for mass production considering low weight, cost, and high reliability. This development led to a spray-on-foam (SOFI) which covers the entire tank. The need and design for a SOFI material with a dual role of cryogenic insulation and ablator, and the development of the SOFI over SLA concept for high heating areas are discussed. Further issuses of minimum surface ice/frost, no debris, and the development of the TPS spray process considering the required quality and process control are examined

    Chemical Evidence for Smectites and Zeolites on Mars: Criteria and Limitations

    Get PDF
    Aqueous alteration on Mars can produce a range of tell-tale secondary minerals [1]. Surface missions typically obtain detailed and highly localized element compositional information, but not always mineralogical information, whereas orbital missions deduce mineralogy from relatively high spatial resolution IR spectral mapping (decameters scale, for CRISM), but obtain element data only over much larger areas of martian terrain (~200 km). Surface missions have also discovered several occurrences of major geochemical alteration of igneous precursors, for many of which elemental compositional is the only diagnostic information available. Many types of clays and zeolites have quasi-unique element profiles which may be used to implicate their presence. In some cases, one or more candidate minerals are sufficiently close in their component elements and their stoichiometry that ambiguity must remain, unless other constraints can be brought to bear. Geochemical characteristics of alteration products most likely on Mars can be compared to results from MER and MSL rover missions (e.g. Independence [4] and Esperance samples). These considerations are needed for MER Opportunity rover now that Mini-TES is no longer operational. It also has importance for exploration by the MSL Curiosity rover because inferences and deductions available from ChemCam (CCAM) remote LIBS and/or in situ x-ray fluorescence (APXS) can be used as indicators for triage to select materials to sample for limited-resource instruments, SAM and Chemin

    Mineralogical and Geochemical Trends in a Fluviolacustrine Sequence in Gale Crater, Mars

    Get PDF
    The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and geochemical variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. Geochemical data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and geochemical trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones

    CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    Get PDF
    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract

    Investigation of Martian Aqueous Processes Using Multiple Alpha Particle X-ray Spectrometer (APXS) Datasets

    Get PDF
    The APXS instruments flown on the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Science Laboratory (MSL) Curiosity were based on the same fundamental design. The calibration effort of the MSL APXS used the same reference standards analyzed in the MER calibration which ensures that data produced by all three instruments provide the same compositional results for the same sample. This cross-calibration effort is unprecedented and allows direct comparisons and contrasts of samples analyzed at Gusev Crater by Spirit, Meridiani Planum by Opportunity, and Gale Crater by Curiosity
    corecore